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Two point distributions

Figure: 6765 i.i.d. random points/ Fibonacci points
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Uniform distribution

Definition

A sequence of point sets (XN)N∈N (XN ⊂ Sd ) is called uniformly
distributed, if

lim
N→∞

# (XN ∩ C)

N
= σd (C),

for all spherical caps C.

Throughout, σ = σd will denote the normalised surface area
measure on Sd .
This is equivalent to

lim
N→∞

1
N

∑
x∈XN

f (x) =

∫
Sd

f (x) dσd (x)

for all continuous (or even Riemann-integrable) functions f .
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Uniform distribution

By the density of spherical harmonics in the continuous
functions

lim
N→∞

1
N2

∑
x,y∈XN

P(d)
n (〈x,y〉) = 0

for all n ≥ 1 is equivalent to uniform distribution.
We denote by P(d)

n the Legendre-polynomials for Sd normalised
by P(d)

n (1) = 1. These are Gegenbauer-polynomials for
parameter λ = d−1

2 up to a scaling factor.
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Quantify evenness

For every point set XN = {x1, . . . ,xN} of distinct points, we
assign several qualitative measures that describe aspects of
even distribution.
Then we can try to minimise or maximise these measures for
given N.
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Combinatorial measures

discrepancy

DN(XN) = sup
C

∣∣∣∣∣ 1
N

N∑
n=1

χC(xn)− σ(C)

∣∣∣∣∣
covering radius

δ(XN) = sup
x∈Sd

min
k
|x− xk |

separation
ρ(XN) = min

i 6=j
|xi − xj |
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Analytic measures

error in numerical integration

IN(f ,XN) =

∣∣∣∣∣ 1
N

N∑
n=1

f (xn)−
∫
Sd

f (x) dσd (x)

∣∣∣∣∣
Worst-case error for integration in a normed space H:

wce(XN ,H) = sup
f∈H
‖f‖=1

IN(f ,XN)),
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L2-discrepancy and energy

L2-discrepancy:

∫ π

0

∫
Sd

∣∣∣∣∣ 1
N

N∑
n=1

χC(x,t)(xn)− σd (C(x, t))

∣∣∣∣∣
2

dσd (x) dt

(generalised) energy:

Eg(XN) =
N∑

i,j=1
i 6=j

g(〈xi ,xj〉) =
N∑

i,j=1
i 6=j

g̃(‖xi − xj‖),

where g denotes a positive definite function.

L2-discrepancy and the worst case error (for many function
spaces) turn out to be generalised energies of the underlying
point configuration.
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Hyperuniformity in Rd

The concept of hyperuniformity was introduced by Torquato and
Stillinger to describe idealised infinite point configurations,
which exhibit properties between order and disorder.
Such configurations X occur as jammed packings, in colloidal
suspensions, as well as quasi-crystals. The main feature of
hyperuniformity is the fact that local density fluctuations are of
smaller order than for an i. i. d. random (“Poissonian”) point
configuration.
During a semester program on “Minimal Energy Point Sets,
Lattices, and Designs” in fall 2014 at the Erwin Schrödinger
Institute in Vienna Salvatore Torquato asked, whether a notion
of hyperuniformity could be defined for point sets (or point
processes) on the sphere.
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Hyperuniformity in Rd

Heuristic
Hyperuniformity = asymptotically uniform + extra order

Counting points in test sets, e.g. balls BR

NR :=
N∑

i=1

1BR (Xi) , where (X1, . . . ,XN) ∼ ρ(N)
V

The expected number of points in BR is

E [NR]
th.→ ρ|BR|
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Hyperuniformity in Rd

The variance measures the rate of convergence.

Example: (Xi)i i.i.d. ⇒ V[NR]
th.→ ρ|BR|.

Definition

(ρ(N))N∈N hyperuniform⇐⇒ lim
th.

V[NR] ∼ |∂BR| for large R

Remarks:
If (ρ(N))N∈N hyperuniform, i.e. Rd -term of lim

th.
V [NR]

vanishes
⇒ Rd−1-term cannot vanish.
Hyperuniformity is a long-scale property.
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Hyperuniformity on the sphere

Definition (Hyperuniformity)

Let (XN)N∈N be a sequence of point sets on the sphere Sd . The
number variance of the sequence for caps of opening angle φ is
given by

V (XN , φ) = Vx# (XN ∩ C(x, φ)) . (1)

A sequence is called
hyperuniform for large caps if

V (XN , φ) = o (N) as N →∞ (2)

for all φ ∈ (0, π2 ) ;
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Hyperuniformity on the sphere (continued)

Definition (continued)
hyperuniform for small caps if

V (XN , φN) = o (Nσ(C(·, φN))) as N →∞ (3)

and all sequences (φN)N∈N such that
1 limN→∞ φN = 0
2 limN→∞ Nσ(C(·, φN)) =∞.

hyperuniform for caps at threshold order, if

lim sup
N→∞

V (XN , tN−
1
d ) = O(td−1) as t →∞. (4)
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Large caps

If (XN)N∈N is hyperuniform for large caps, then

lim
N→∞

1
N

∑
x,y∈XN

P(d)
n (〈x,y〉) = 0

for all n ≥ 1. This implies uniform distribution of (XN)N∈N.
Furthermore, it is not enough to require the defining relation for
hyperuniformity for only one value of φ.
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Small caps

If (XN)N∈N is hyperuniform for small caps, then

lim sup
N→∞

1
N

∑
x,y∈XN

P(d)
n (〈x,y〉) <∞

for all n ≥ 1. This again implies uniform distribution of (XN)N∈N.
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Threshold order

If (XN)N∈N is hyperuniform at threshold order, then

lim
N→∞

1
N2

∑
x,y∈XN

P(d)
n (〈x,y〉) = 0

for all n ≥ 1, which again gives uniform distribution of (XN)N∈N.
In the cases of small caps and caps of threshold order the
conclusion of uniform distribution is not immediately obvious,
since the range of caps for testing the distribution is quite
restricted.
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Relations to irregularities of distribution

In the development of the theory of uniform distribution it has
been observed that the discrepancy of point sets has a general
lower bound of larger order than the obvious 1/N.
The theory of irregularities of distribution has been developed
by J. Beck, W. Chen, K. F. Roth, W. Schmidt, and many others.
For the spherical cap discrepancy it gives the lower bound

DN(XN)� N−
1
2−

1
2d

valid for all point sets XN .
The lower bound is derived by considering the deviation for
“small caps” in the sense introduced above.
There is a new proof of this lower bound by Bilyk and Dai,
which is based on a very general version of Stolarsky’s
invariance principle.
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Known upper bounds

It was also shown by Beck that there exists a point set with N
points with

DN(XN)� N−
1
2−

1
2d
√

log N.

This proof is probabilistic and does not give a construction for
this point set.
The best known construction is due to Aistleitner, Brauchart,
and Dick, projecting the so called Fibonacci point set to the
sphere. This gives

DN � N−
1
2 .
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Deterministic hyperuniform point sets

t-designs of minimal order
point sets maximising ∑

x,y∈X

‖x− y‖

sequences of QMC-designs
many candidates like Fibonacci-points or spiral points, but
no proofs. . .
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Probabilistic aspects

The original setting of hyperuniformity comes from statistical
physics. The points are assumed to be sampled from a point
process. The number variance is then the variance with respect
to the process.
In this context the i.i.d. random case is referred to as the
“Poissonian point process”. This process is – of course – not
hyperuniform.
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Determinantal point processes

A point process is determinantal on M with kernel
K : M ×M → R, if its joint densities are given by

ρN(x1, . . . ,xN) =
1

N!
det
(

K (xi ,xj)
N
i,j=1

)
.

This notion was originally developed in physics, where the joint
wave function of N fermionic particles can be expressed as a
determinant of the above form.
The fact that the determinant vanishes, if xi = xj for some i 6= j ,
implies a mutual repulsion of the sample points (“particles”).
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Determinantal point processes

The eigenvalues of random matrices, as well as the roots of
random polynomials can also be modelled by determinantal
point processes.
One special case is especially important and easy to
understand:Let H ⊂ L2(M) be a finite dimensional space and
KH be the orthogonal projection to this space. If N = dim H,
then the DPP given by the kernel KH samples exactly N points.
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The spherical ensemble on S
2

The kernel

K̃ (N)(x , y) =
N(1 + xȳ)N−1

4π(1 + |x |2)N+1(1 + |y |2)N+1

on C2 describes the distribution of the eigenvalues of AB−1 for
two N × N matrices A,B with i.i.d. complex Gaussian entries.
Stereographically projecting the eigenvalues to the sphere S2

gives a point process; the spherical ensemble. Its joint
densities are given by

CN

∏
1≤i<j≤N

‖xi − xj‖2

with a normalising constant CN .
It has been shown by Alishahi and Zamani that samples of the
spherical ensemble are hyperuniform for small caps.
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Sample of spherical ensemble

Figure: 6765 sampled points from an i.i.d. process and a DPP, resp.
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The harmonic ensemble on S
d

Let HL be the span of all spherical harmonics of degree ≤ L on
Sd . Then the corresponding projection kernel defines a
determinantal point process sampling dim H ∼ Ld points. This
process was introduced and studied by Beltrán, Marzo, and
Ortega-Cerdá.
They proved inter alia that samples of this process are
hyperuniform for small caps.
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Jittered sampling

Let Ai (i = 1, . . . ,N) be an area regular partition of Sd with
diam(Ai) ≤ CN−

1
d and σ(Ai) = 1

N . Such partitions exist by work
of Kuijlaars and Saff and Gigante and Leopardi.
Then define point process by taking N points idependently
uniformly from the sets Ai (one point per set). This process is
the determinantal process given by the projection to the space
of functions measurable with respect to the finite σ-algebra
generated by (Ai)

N
i=1.

Jittered sampling points are hyperuniform in all three regimes.
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Open questions

Find relations with other measures of uniformity:
discrepancy, error of integration, energy. . .
Find more explicit deterministic constructions for
hyperuniform point sets for any N.
Find explicit deterministic constructions for point sets
achieving the best possible discrepancy bound (or even a
bound better than N−

1
2 )
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